
Chapter 9 

]Vlodels of Self-Assembly 

Profound study of nature is the most fertile source of mathematical discov­

eries. 

Fourier, Analytical Theory of Heat 

9.1 Introduction 

One does not have to understand the science of optics to appreciate the 
beauty of a rainbow; but it helps. In the same way, one need not master 
the mathematics of self-assembly in order to appreciate the power of the con­
cept; but here too, it helps. In the first two parts of this book we focused on 
descriptions of self-assembling systems. At times, we made use of mathemat­
ics, but ultimately our focus was on experiment rather than theory. In this 
chapter, we shift our focus and examine the various theoretical approaches to 
understanding the phenomenon of self-assembly. 

There are as many different approaches to mathematically modelling self­
assembly as there are examples of physical self-assembling systems. In the 
end, the type of model one constructs depends upon the type of question 
one wishes to answer. These questions can vary wildly. At one end of the 
spectrum, we have models built to illuminate the behavior of one specific self­
assembling system. Such a model can have great utility. If accurate, it can 
help reduce the number of costly or time consuming experiments one needs 
to conduct. It can clarify the role of various parameters in the system and 
~Ive a. picture of parameter space that might otherwise be inaccessible. At its 
est, It can clarify a complex situation, help guide experiment, and identify 

new experimental regimes to be explored. At the other end of the spectrum 
We have abstract models of the phenomenon of self-assembly. These models 
are Usually divorced from any particular experimental system; rather they 
~ek to capture the behavior of some large class of self-assembling systems. 

hese models too, can have great utility. At their best, they can help us 
answer "What is possible?" types of questions. Is it possible to self-assemble 
a Sierpinski Gasket in a system containing only two tile types? Is it possible 
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to self-assemble a cell given infinitely many tile types? These are the typ 
questions that abstract models are best at answering. 

However, there is no hard and fast boundary between these types of mo 
Models of a particular physical system are often found to apply to othe:"'" 
tems, systems that at first might seem unrelated. These models are per 
more abstract than we initially thought. Abstract models take their ins 
tion from physical systems and in seeking to capture general principles, q 
end up capturing real behavior remarkably well. At times, a model that!, 
tially seemed abstract may end up being physically realizable, and en 
showing us a new route to self-assembly. 't 

Nor is there any mathematical distinction between these types of mQ 
The equations of continuum mechanics can help us develop a detail, -, 
scription of the shape of a meniscus, but they can also be implement_ 
a computer, governing the behavior of fictitious particles that have no -, 
terpart in the real 'World. Seemingly pure branches of mathematics, su 
graph theory, which lends itself nicely to several abstract approaches, : 
lends itself nicely to robotic control schemes for real world engineered . 
cles. Similarly, computer simulation plays an important role in the an' 
of every kind of model. Both physically driven models and abstract mii 
have a tendency to become analytically intractable. In both cases, num 
simulation becomes a necessity. 

Nonetheless, for clarity in the discussion, we will make a distinctI 
tween these two types of models. We'll divide this chapter into two 
sections. In the first, Physical Models, we'll describe approaches that:( 
close to one physical system or some small subclass of physical syste 
the second, Abstmct Models, we'll examine approaches to "What is possi 
type questions. I: 

In Section 9.2, Physical Models, we begin with a mathematical ill 
the structured surfaces discussed in Chapter 6. This model asks the qu 
What can be accomplished if an electric field is used to manipulate the 
imal energy surfaces of Chapter 6? This model is very much at the 'I 

experimental system" end of the spectrum. Through this model we'll seell 

key parameters in a problem may be identified and how a model can hi 
understand parameter space and suggest experimental directions. Next;. 
examine a model that attempts to explain why the helix is such a faD! 
structural motif in nature. In contrast to the structured surface model), 
model focuses on a class of self-assembling systems rather than on a' 
experimental setup. We'll see how such a model can be useful, both to 
insight into a broad problem, and to actually predict experimental f' 

For our third model, we'll return to the first system we discussed in C 
6: the self-assembling tile system of Hosokawa et al. The model we'lldi J 

is drawn from their original paper [62] describing their experimental a~d; 
oretical results. We'll see how a model inspired by chemical reaction kl 
can capture the behavior of a tile based self-assembling system. Fin3JI 
this section, we'll discuss the so-called waterbug model, due to Eric KI., 
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'This final model is again unattached to any particular physical system, but 
is inspired by a class of such systems. With this model, we'll see how theory 
can aid in the design of physical systems. 

In Section 9.3, Abstmct Models, we focus on three abstract approaches to 
modelling self-assembly. The notion of a conformational switch is the focal 
point of the first of these models. We encountered conformational switching in 
Chapter 3 when we discussed the tobacco mosaic virus. We also encountered 
this notion when we discussed proteins and again in part two of this book in 
the context of several different engineered systems. The model of conforma­
tional switching presented in this section attempts to characterize the power of 
a conformational switch to encode for a given assembly sequence. The second 
model we consider is based on the notion of a graph grammar. This model 
generalizes the conformational switch model and within the context of the 
model is able to provide a constructive solution to the backward problem of 
self-assembly. The final model we consider is the Tile Assembly Model. This 
important model provides the link connecting self-assembly and computation. 
We'll see how this model has been used to explore the question of complexity 
of a self-assembling system and how this model provides a promising route to 
programmed self-assembly. 

One final note before we begin - to understand the details of every model 
discussed in this chapter requires a broad mathematical background. Here, 
we won't focus on these details. Rather, we'll attempt to provide a sense 
of the thinking behind the model, the questions it seeks to address, and the 
importance of the answers to those questions. Further, where it seems most 
appropriate, we'll fill in the mathematical background needed to understand 
the basics of the model. However, this may not always be enough. If you find 
the details of a particular model in this chapter to be confusing or inaccessible, 
skip them. You should still be able to get a sense of the model. If you still 
find a particular model to be heavy going, skip it entirely. The subsections 
in this chapter are mostly independent. l I encourage you to find a modelling 
approach and a set of questions that excites you, and to continue from there. 

9.2 Physical Models 

In this section, we present four models that are focused on one particular 
PhYsical system, or on a small subclass of such systems. We've chosen these 
tnodels as representative examples. Many more such efforts exist. We refer the 
reader to [12, 64, 88, 148] for information on similar approaches to modelling 
:elf-assembly. Further, if you return to part two of this book, you'll find that 
t~e references to the experimental systems discussed often contain models of 

eSe systems. 
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9.2.1 Modelling Structured Surfaces 

In Chapter 6, we examined an approach to self-assembly, pioneere J~ 
the Whitesides group, that we called structured surfaces. Recall that in 
approach, droplets of PDMS were placed between rigid plates and that: 
changing the wettability of these plates, the density of the surrounding ft! 
and the orientation of these plates, the shape of the surface assumed by' 
PDMS droplet could be controlled. In turn, the PDMS could be cross-li ,f 

or solidified, and hence objects with interesting shapes constructed wit 
the use of a mold or template. In their original article, the Whitesides 
[70] also conjectured that electric or magnetic fields could be used to otlJ 
an additional level of control over the shape of these surfaces. The mod' 
this section explores this idea. This model is due to Derek Moulton; fu 
details may be found in [93]. 

To begin, Moulton replaced the PDMS droplet of Whitesides by a soap! 
spanning two identical concentric rings. Working with a soap film aU 
him to remove the volume constraint inherent in the PDMS system and 
with simple boundary conditions at the endpoints. Additionally, Moulton" 
able to carry out experiments with the system he devised. As we disc' 
in Chapter 6, a soap film spanning two rings naturally forms a catenoid; 
see how this shape could be manipulated, Moulton added an outer elect! 
to the system surrounding the two ring soap film structure. By applyii, 
voltage difference, an electric field could then be created in the gap bet 
the soap film and the electrode. The basic setup of this system is sho 
Figure 9.1. 

z' 

L 

Outer electrode,
 
potential V
 

Soap film,
 
potential zero
 

FIGURE 9.1: The geometry of the soap film and electrode system, 
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By adding an electric field, Moulton added a second energy to the problem. 
The soap film will attempt to minimize its surface energy, we saw this in 
Chapter 6. But, there is also energy stored in the electric field. The shape 
selected by this system will minimize the total energy, i. e., the sum of the 
surface and field energies. 

To derive an equation that would predict this shape, Moulton first needed 
to derive expressions for each of these energies. In sketching this derivation, 
we use the notation of Figure 9.1. Note that in the figure, the shape of the 
surface is specified by the function u' (z') and the electric field is specified in 
terms of the potential function '1/;' (1" , (), z'). The potential is assumed constant 
on the outer electrode and on the soap film. The rings supporting the film 
are of radius a, they are placed a distance L apart, and the outer electrode 
has radius b. 

In electrostatics, the electric field, E, can be specified entirely in terms 
of the potential function through E = -\1'1/;'. Since in the absence of free 
charges, the field satisfies - ) 

\1·E=O (9.1) 

the potential, '1/;', satisfies the Laplace equation 

\12'1/;' = O. (9.2) 

The fixed potential conditions on the soap film and outer electrode translate 
into the boundary conditions 

'I/;'(b,(),z') =0 (9.3) 

'I/;'(u'(z'), (), z') = O. (9.4) 

Now, note that the soap film surface, u'(z'), must also satisfy boundary con­
ditions. In particular, 

u'(L/2) = u'(-L/2) = a. (9.5) 

Notice that we already have four parameters in this problem, a, b, L, and V. 
In models such as this, it is convenient to introduce nondimensional variables. 
!his not only simplifies the discussion, but also helps one uncover the relative 
ImPortance of various terms in the model and helps reduces the dimension of 
parameter space to a manageable level. This process is called nondimension­
alization. You can find a thorough explanation of this process in [99]. Here, 
we introduce the variables 

z' 1" '1/;' u' 
u= -. (9.6)z = L' r=b_a' '1/;= V' a 

With these substitutions, Equations (9.2) through (9.4) become 

02'1/; 10'1/; 202'1/; _-+--+E --0 (9.7)
01'2 r' 01' OZ2 
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'l/J=1 at T=-­
b-a 

a
'l/J=o at T = -b-u(z).

-a 

This set of equations is in non-dimensional form. The key dimensio 

I,

i 

But,'\:

Gi 

I, 

.
 

parameter that arises here is f = (b - a)/L. Physically, f is an aspect ra.i
 
comparing the size of the gap to the length of the device. In his experime~
 
system, Moulton found that f was in fact a small parameter. This fact
 
be used to simplify the analysis below.
 

Now, the energy stored by the electric field is given by a volume inte,"
 
taken over the region between the soap film and outer electrode. In partic
 

2fO JlEI-2 fO JJ\7'l/J'J.Electrostatic Energy = -"2 = -"2 

Notice that to compute this energy, we need to know 'l/J' or equivalentlj 
This means that we need to solve Equations (9.7) through (9.9). How' 
this is not easy. First, the shape of the domain is not regular, and secol 
the shape of the domain is not even known; it depends on u(z). 
approximate solution for 'l/J can be obtained by exploiting the fact f is a s 
parameter. This requires asymptotic analysis; we'll skip the details. 
this approximate solution, an expression for the electrostatic energy caD,: 
obtained. It can be further simplified by using the divergence theorem2 l 
the boundary conditions. At the end, we obtain 

11/2 ( 15 )-1
Electrostatic Energy = -7l'foV 2 L log -() dz. 

-1/2 U Z 

Note that here, the dimensionless parameter 15 is the ratio b/a of the radil­
the outer and inner cylinders. 

With the electrostatic energy in hand, we are halfway there. We still n' 
an expression for the surface energy in the problem. But, we know that t 
energy is simply proportional to the change in surface area, and we already 
how to compute this in Chapter 6. In terms of our nondimensional variab 
we can write the surface energy as 

1
1/2 

Surface Energy = 27l'TLa uJl + (J'2u~dz. 
-1/2 

Here, the subscript on the u denotes differentiation with respect to z, t, 
dimensionless parameter (J' equals a/L, and T is the film tension. 

Finally, forming the sum of our two energy expressions and dividing 
27l'TLa we obtain an energy functional for our system 

1/2 ( A )
E[u(z)] = -1/2 uJl + (J'2 u; - 10g(t5/u) dz. 

/ 
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Bere, the dimensionless parameter A is given by 

2 
A= f OV (9.14)

2Ta 

'This parameter measures the relative strengths of the electrostatic and surface 
energies in our system. This function, E[u(z)], is not so far from other energy 
functionals we've encountered in this book. It maps the shape of our surface, 
u(z), to a real number denoting the energy of the system. As usual, we claim 
that nature chooses the shape that makes this energy as small as possible. 
Fortunately, this functional is in a form such that the Euler-Lagrange equation 
introduced in Chapter 6 can be applied. Doing so, we find that u(z) satisfies 

1 + (J'2 U ; - (J'2 uuzz A 
(9.15)(1 + (J'2u~)3/2 - ulog2(t5/u) 

plus the boundary conditions 

u(I/2) = u( -1/2) = 1. (9.16) 

Now, a complete and detailed analysis of Equations (9.15) and (9.16) is 
beyond the scope of this book. These details are developed further in the 
exercises and can be found in [93].3 Rather, here, let's make a few observa­
tions about this model, about how it can be used, and why such a model is 
important in self-assembly. 

First, note that the left hand side of Equation (9.15) is actually the negative 
of the mean curvature operator we encountered in Chapter 6. Hence, Equation 
(9.15) can be rewritten as 

-A
Hu= . (9.17) 

u log2 (15 /u) 

This is interesting to note because this represents a generalization of the 
standard equation of constant mean curvature surfaces. In fact, Moulton calls 
his surfaces field driven mean CUTvatuTe surfaces. Self-assembly has given us 
a new and interesting problem in mathematics. More importantly, note that 
this formulation has greatly simplified and clarified the parameter space of 
the original problem. Here, we find three nondimensional parameters, A, (J', 
and 15. The parameter space of the original formulation was six dimensional. 
With this formulation we see that not every parameter independently effects 
the shape of the surface. Rather, it is the ratio of groups of these parameters 
that is important. Next, we can immediately see that there are two special 
~)(act solutions to this problem. The first occurs when no voltage is applied; 
In this case the surface assumes the shape of a catenoid. The second is a 
cYlindrical soiution, u = 1, that occurs when exactly the right voltage is 
applied. This already begins to give some insight into the control that can be 
Obtained over surface shape via the application of an electric field. Further, 
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using perturbation theory, these special solutions can be used to const~ 

approximations to nearby solutions. In this way Moulton was able to aIlS" 
a rather interesting question. In particular, he knew that in the absen 
applied voltage, there was a critical value of a, such that the catenoid solut' 
disappeared when this critical value was passed. We saw this in Chapt, 
Moulton asked whether or not an applied voltage would allow one to 
assemble nearly catenoid shaped surfaces beyond the critical value ott 
parameter. His analysis yielded an affirmative answer to this question. i' 
to obtain such surfaces, parameter values must be balanced very carefuIIY,i 
is unlikely that this parameter regime would be found by experiment ala 
Further, through analysis of this model, Moulton was able to show that t-' 
are limits to what the applied field can do. He showed that as the voltag~ 
increased, the soap film begins to bulge outwards towards the outer electr, ' 
But, it does not continue to do so in a smooth way until it reaches the a 
electrode. Instead, there is a critical value of the applied voltage beyond w 
the soap film simply pops. Finally, we should note that Moulton has c 
out several experiments with this and related systems. He has obtained 
agreement between his theory and experimental results. 

This type of model is important in self-assembly precisely because it b' 
guide the experimenter through a large and treacherous terrain. To be ~, 
successful, models such as these must be tightly coupled to experimental 
forts. The development of virtually every self-assembling system discuss, 
this book can benefit from models such as these. The models may not'f\1 

the form of the model discussed here; energy minimization may not aij 
or such an approach may be too difficult to be of use. But, tight coup': 
between experimental efforts and theoretical efforts such as these promjs(ij 
help us push the boundaries of experimental self-assembly rapidly forw " 

9.2.2 Modelling Helix Formation 

In the cell, DNA naturally assumes a helical shape. This basic design 
curs throughout nature. In Chapter 3, we saw that the secondary struo 
of proteins consisted of 0: helices and f3 sheets. The 0: helix is, obvio: 
another example of helix formation in nature. The f3 sheet is yet another:. 
ample, consisting of a sequence of helices lying side by side. Helix forma~ 
in proteins is one restricted example of the general protein folding prob 
discussed in Chapter 3. In this section, we consider a model due to Yeh 
Snir and Randall D. Kamien [126] that asks why the helix design is so P 
lent in nature. Basically they asked: Why do natural structures so freque 
self-assemble into a helix? 

Their model, while still in our class of physical models, is more abst 
than the model above. Rather than attempting to understand helix fo 
tion in a particular protein, or other particular physical system, Snir 
Kamien attempted to find minimal conditions under which helix forma: 
would occur. They began by considering a long cylindrical rod of radi 

immersed in a solution. They also imagined that this solution contained some 
concentration, n, of hard spheres of radius r. Next, they posited a simple 
interaction mechanism between their spheres and their rod. They imagined 
their rod was surrounded by an annular region that was inaccessible to the 
hard spheres. Next, they considered the entropy of the spheres. If the inac­
cessible region were very large, the spheres would be confined to some small 
region of space. In turn, this would imply that their entropy was low. If 
this region were smaller, the spheres entropy would increase. Now, fixing 
the excluded volume, they required that the system attempt to maximize the 
entropy of the hard spheres. With the excluded volume fixed, the only way 
entropy could increase was if the rod were to bend or fold. Folding resulted 
in increased entropy because it created regions where the inaccessible annu­
lar region overlapped itself. This reduced the inaccessible region seen by the 
spheres and hence increased their entropy. But, there is a cost to this folding, 
increased elastic energy. That is, it requires more elastic energy for the rod to 
bend than for it to stay straight. They required that their system minimize 
this elastic energy as well as maximize the entropy of the hard spheres. It was 
a balance of these two that they speculated might lead to helix formation. 

This balance of entropy and energy can be expressed in the free energy for 
the system. For the Snir and Kamien system the total change in the free 
energy due to bending of the rod is given by 

1 
6F = 2Llp",2 - nVo. (9.18) 

Here, L is the length of the rod, '" is the curvature of the rod in a helical 
formation, Ip is the persistence length and measures the stiffness of the rod, 
n is the hard sphere concentration, and Vo is the reduction in the excluded 
volume that occurs when the helical shape is assumed. 

Notice that in their model, Snir and Kamien assumed a helical formation 
for the rod. A helix has constant nonzero curvature, hence the '" term in 
Equation (9.18) is a constant. This model could be generalized by allowing 
the rod to assume any shape. In this case the ",2 term would be replaced by 
an integral of ",2 over the length of the rod. Since the shape of the rod can be 
specified completely in terms of its curvature, this would turn Equation (9.18) 
into a functional, mapping the rod shape to the free energy. Unfortunately, 
the second term in Equation (9.18) is not so easily expressed as an integral. 
This means that there is no easy approach to deriving a differential equation 
for the rod shape. So, instead, Snir and Kamien took their cue from nature, 
and replaced the unmanageable space of all possible rod shapes, with the 
lllanageable space of helices. Also note that Equation (9.18) embodies the 
~ornpetition between elastic energy and sphere entropy discussed above. The 
rst term on the right is always positive and captures the increase in free 

energy needed to bend the rod. The second term on the right is always 
negative and captures the increase in entropy of the spheres that occurs when 
the overlap region becomes larger. This second term is also proportional to 
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the concentration of hard spheres. As this concentration increases, a s 

t 

..

. 

change in the overlap volume results in a large change in the entropy of 
particles. 

The difficult aspect of analyzing this model is in computing the overlap i 
ume for a given rod configuration. Restricting attention to helices made" 
task manageable, but numerical computations were still necessary. Perfol 
ing these computations, the team then characterized their results in tenDl 
three dimensionless parameters. The first dimensionless parameter, c = PI 
allowed them to specify their helix in terms of its pitch, P, and radius, R. " 
pitch of a helix is the distance between successive turns. The second dim' 
sionless parameter, r It, allowed them to characterize the relative size ofi 

hard spheres as compared to the radius of the rod. The final dimensio' 
parameter, e = nr3/(lplt), serves as a control parameter, allowing the 
compare a reference entropy with a reference energy. 

Now, if the parameter r It is fixed, there is a single value of c that maxi 
the overlap volume. Hence, c may be regarded as a function of r It. Nuri 
cally, the group computed this functional dependence and showed that J' 
went to zero, c tended towards a limiting value, c' ;::::: 2.5122. This meant' 
for small spheres, a helix would form with this given pitch to radius 'r 
Remarkably, this ratio compared well with measured ratios found in he 
proteins, where the lower bound c ;::::: 2 had been found. The group also pld~ 
eas a function of r It. This gave them a picture of the configuration S1> 
the helix. For low values of e, the tube forms a stretched helix, but as g" 

threshold value is crossed, the helix collapses into a tightly wound spiral:\ 

To illustrate the role of lattice models and also to gain more insight r 
the work of Snir and Kamien, let's examine a simplified lattice model ve 
of their energy-entropy helix formation system. To begin, we'll const 
our "rod" on a lattice like those discussed in Chapter 3. We can im. 
specifying the configuration of our rod by starting at the origin, pic' . 
direction, moving one step in this direction, and then repeating the pro 

/ At each step, we form an edge, or a bond. A sample rod is shown in Fij 
9.2. If we don't allow our rod to fold back onto itself, this means that i
 
first step we have four directions to choose from, but in subsequent steps\,
 
three. We can specify our rod in terms of a vector
 

iii = [mo, ml,···, mN]' 

The first component of the vector, mo, takes the value 1, 2, 3, or 4, accor
 
as our initial step. We label a step in the positive x-direction by 1, in l
 

positive y-direction by 2, and so on. The remaining components of the v,
 
take on one of three possible values, -1, 0, or 1. We label a step wit
 
turn by 0, a counterclockwise step by -1, and a clockwise step by 1­

we imagine that every time we bend our rod, or in this case take a ,
 
perpendicular to the last step, that it costs elastic energy. The total ela:l/
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I
 
Start at the origin 

FIGURE 9.2: A bent rod in our lattice model. 

energy of our rod can then be written as 

N 

Elastic Energy = a L m; = ambo (9.20) 
i=l 

Here, we have introduced the constant a to measure the magnitude of the
 
energy required for one bend. The constant mb is simply the total number of
 
bends in our rod. Note that the direction of the bend does not matter, this is
 
why the mi are squared in the sum. Next, to capture the notion of excluded
 
volume, we define Vs to be the number of empty lattice sites adjacent to our
 
straight rod, Figure 9.3. The reader may verify that for a rod with N + 1
 
bonds, Vs = 2N + 6. For a bent rod, we define Ve to be the number of lattice
 
sites adjacent to the rod. Hence, we can write an excluded volume energy as
 

000000
 
o 0
 

000000
 

'"
 Empty circles are the excluded volume 

1'lGURE 9.3: The definition of excluded volume in the lattice model. 
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Excluded Volume Energy = ,6(Vs - Ve ) = V(m). 

Here, the parameter ,6 may be thought of as a measure of the external 
centration of hard spheres in our system. Our total energy is then 

E[m] = amb - ,6V(m). 

Note that this too is an energy functional. This time, it maps our s 
vector, m, to the real number denoting the energy of the system. 

Finding the shape assumed by our rod now reduces to computing E[m]' 
all rods of a given length, and then picking the one with least total en~ 
We illustrate with a simple example. If N = 1, we have rods consisting of' 
two steps. Ignoring symmetries, there are only two possible rod shapes, 
straight rod, or the right angled rod. These are shown in Figure 9.4. 

0.9 

0.8 

Bent rod 
0.7 --I 
0.6 

co. 0.5 

0.4 
o • 0 

0.3 
Straight rod 

0.2 

0.1 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FIGURE 9.4: A phase diagram for our lattice model, N = 1. 

are specified by the vectors [1,0] and [1,1]. The energies are given by 

E[[l,O]] = 0 

E[[l,l]] = a -,6. 

Hence, we immediately see that if a > ,6 the rod remains straight, whU,
 
a < ,6, the rod bends. This lets us sketch the phase space shown in Fi
 
9.4. 

9.2.3 

~ere, T 
d~e 

T 

a 
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'This lattice model, while easily grasped, suffers from a similar defect to 
the model above. If N becomes large, the number of possible rod shapes, or 
the size of the state space of the model, becomes enormous. This is a typical 
problem of models of self-assembly and one that is difficult to deal with. 

'The model of Snir and Kamien presents us with a nice example of a physical 
model that seeks to capture the behavior of a class of self-assembling systems. 
Their model provides good insight into minimal conditions for helix formation. 
The fact that their model predicts a pitch to radius ratio that is in good accord 
with experiment is remarkable. It illustrates the power of conceptually simple 
models to capture the actual behavior of real physical systems. 

Chemical Kinetics Models 

In Chapter 6, we examined the self-assembling tiles of Hosokawa et al. At 
the time, we noted that in their original paper, Hosokawa et al. presented a 
mathematical model of their system. In this section we return to the Hosokawa 
system and examine their modelling approach. We note that this model is 
a physical model, but relies on certain abstractions. Particle collisions are 
treated using chemical reaction kinetics; an assumption that mayor may not 
be valid. Further, while Hosokawa et al. only applied their model to their 
self-assembling system, the basic approach is more widely applicable and has 
been used and extended by other authors. 

Recall that Hosokawa et al. designed a set of tiles with the intent of self­
assembling a simple finite cluster. In their first set of experiments, they en­
countered what they called reverse coupling. In their second set of experi­
ments, Hosokawa et al. constructed tiles that enabled them to overcome the 
reverse coupling phenomenon of their first set. These tiles could exist in one of 
four stable cluster types. These clusters are pictured in Figure 9.5. Denoting 
these clusters by Xi, as shown in the figure, Hosokawa et al. proceeded by 
analogy with chemical kinetics and described cluster-cluster binding through 
a set of four reaction equations 

2XI ---- X2 (9.25) 

Xl + X 2 ---- X3 

Xl + X3 ---- X 4 

2X2 ---- X 4 . 

Next, they captured the state of their system at time t in the state vector 

x(t) = [XI(t), X2(t), X3(t), X4(t)]T. (9.26) 

denotes the transpose so that x is actually a column vector, and 
Xi measure the amount of species Xi at time t. Next, they formulated a 

IScrete model for their system, based on reaction kinetics, and similar to the 
COntinuous reaction kinetic based models we have explored elsewhere in this 
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X1 

I

" GO66 

FIGURE 9.5: The four cluster types in the model of Hosokawa et al. 

j 

i 

text. In particular, they assumed their system evolved according to 

x(t + 1) = x(t) + AP(x(t)). 

To understand this discrete dynamical system, let us proceed in two st. 
For the moment, let's ignore P, and focus on the matrix A. The matrix j 
~~ 

-2 -1 -1 01 
1 -1 0-2 

A = 0 1 -1 0 . 
[ 

001 1 

The components of this matrix come from the reaction equations. In parti' 
lar, the ijth component, aij, is the number of Xi in the jth reaction equad1 
So, all, is the number of Xl'S appearing in the reaction equation 

2X l ---+ X 2 · 

The minus sign reflects the fact that Xl is used up in this reaction, i. 
it appears on the left hand side of the reaction equation. Now, we need., 
return to P(x(t)). Clearly, since it is to multiply the matrix A, P must t~ 
the vector x as input and return a column vector of the same length. That·j 
P is itself a 4 x 1 vector. Now, the vector P captures the rate at which Q 

different reactions occur. Its jth component, Pj , represents the probabr' 
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the jth reaction occurs in the given time step. If we proceeded directly from 
the Law of Mass Action, we'd find that 

P(x(t)) = k[xi, 2X1X2, 2X1X3, x~JT (9.30) 

where k is a rate constant for the reactions. But, this assumes that all reac­
tions occur at the same rate. That was clearly not what Hosokawa et al. had 
observed in their experiments. Hence, they proposed a modified form for P, 
namely 

( -( )) 1 [ b 2 b b b 2J TP x t = 52 P ll Xl' 2P12 X 1X2, 2P13X 1X3, P22 X 2 . (9.31 ) 

Here, 5 is the total number of clusters of all types, and Pi~ is the conditional 
probability that a bond occurs between and Xi and X j on the condition that 
they collide. 

Hosokawa et al. offered a simple geometric model for approximating the 
Pi~' The reader may find this calculation in [62J. At this point, Hosokawa et 
al. turned to numerical simulation. Fortunately, their basic model is easy to 
implement computationally. They compared their experimental results with 
the output of their simulation. The agreement was not good. But, recall 
that in Chapter 6 when we discussed the Hosokawa system, we noted that the 
reaction 

Xl + X 3 ---+ X 4 (9.32) 

hardly ever occurred. This observation did not accord with their calculated 
value of P{3 ~ 0.188. So to more accurately reflect what was observed experi­
mentally, they set Pf3 to zero. This time, their model did give good agreement 
with their experimental results. 

The model of Hosokawa et al. gives us another nice example of a theoretical 
model closely coupled to experimental efforts. The experiment and analogy 
with chemical kinetics suggested the form of the model. Experiment also 
helped identify the values of parameters in the model. This is a common 
and important form of feedback between theory and experiment. In a purely 
theoretical effort, the unusually low value of P{3 could not have been pre­
dicted. Yet, once the appropriate parameter values were uncovered, Hosokawa 
et al. could use their model with confidence to predict the behavior of systems 
larger than those experimentally accessible. 

9.2.4 The Waterbug Model 

As Our final example of a physical model, we discuss the Klavins' Water­
bUg Model first presented by Eric Klavins in [71]. This model aims at both 
capturing the behavior of and develops methods for control of self-assembling 
sYstems. The model was motivated by the many different tile based systems 
\\Fe examined in Chapter 6, as well as the simple Cheerios effect phenomenon 
of Chapter 5. Klavins noted that this model, while formulated in terms of 

-... .__._._ ~ __.._ _._ ! I 
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the capillary bond, could easily be adapted to systems that use magn 

­

electrostatic, or other forces as their binding force. 
As the basic subunit, or particle, in his model, Klavins used a water, 

This is simple cross-shaped structure reminiscent of the Reif group's 
from Chapter 8. The Klavins waterbug is shown in Figure 9.6. Note 

7"91e wfth exl. I. e 

Center located at 
(xi, Vi) 

FIGURE 9.6: The geometry of the waterbug model. 

this particle consists of two equal length rigid rods joined at their ce . 
At the ends of each rod we find "feet." These are buoyant particles w 
wettability can be controlled. As with the many tile systems of Chap 
these waterbugs are constrained to live on a liquid surface. The meniscus e: 
then creates attraction or repulsion between the feet of various waterb' 
Next, let's sketch the derivation of the waterbug model. 

To capture the behavior of a system of n waterbugs, we begin by sped 
the orientation and location of each particle. In particular, we define 

qi = [Xi, Yi, Od· 
The components Xi and Yi give the location of the center of the bug, 
component Oi gives the angle of its rotation from the x-axis. These coordiJ1; 
are shown in Figure 9.6. From the qi, the location of each foot of a given j' 

can be computed. We find 

Wi,j = [Ui,j, Vi,j] 

where Wi,j gives the position of the ith foot on the jth tile. Note that the 
and Vi,j are specified in terms of the qi' For example, U'i,l = Xi + dcos(1 

Rigid rods, length 2d 
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flence, the complete state of the system is specified by the qi' It is convenient 
to define 

q = [q1, q2, ... , qn] (9.35) 

and use q to denote the state of the system. 
To model the dynamics of the system, again, an energy approach is useful. 

flere, the idea is to derive an expression for the potential energy, an expres­
sion for the kinetic energy, and then to use Lagrangian dynamics to derive 
equations of motion. In previous systems, we've minimized energy to derive 
governing differential equations. In Lagrangian dynamics, we minimize the 
action of the system. The action is defined as the difference between the total 
kinetic and total potential energy in the system. The reader will find more 
information on Lagrangian dynamics in the related reading section. 

(a) (b) 

FIGURE 9.7: Stable and unstable configurations in the waterbug model. 
Type (a) is stable, type (b) is unstable. 

The potential energy in this system is the sum of the pairwise potential 
of all possible pairs of interacting particles. The potential energy between 
Particles i and k is given by 

4 4
 

U(qi,qk) = - L:l::>ijklKO(pIIWi,j -wk,dl). (9.36) 
j=l l=l 

This expression for the potential was derived by assuming that the feet inter­

~_ _ .....• _..__·-0_'--·- __ . 
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acted like spheres on the surface of a fluid. In Chapter 5, we saw that 
force between such particles could be obtained approximately in terms of, t 
modified Bessel function K 1. The potential energy can be expressed in ter': 
of the gradient of the force, and the derivative of the modified Bessel funct 
K is the negative of K 1 . This is the origin of the modified Bessel funce~'o 
Ko, in Equation (9.36). Note that the argument of the Bessel function is 
distance between a pair of feet multiplied by the parameter p. The par~ 
eter p captures the difference in mass density between the particles and' 
fluid. 5 The term Cijkl originates in the coefficient of the force we examin 
Chapter 5. Here, this coefficient is 

Cijkl = 2'WyQijQkl. 

The terms Qij and Qkl denote the wettability coefficient of the jth foot of! 
ith tile and the lth foot of the kth tile. Here, I denotes the surface tensio 
the liquid on which the waterbugs float. It is also necessary to assume 
II'Wi,j - 'Wk,t11 > 2R, where R is the radius of a foot. This assumption ens 
that feet are not touching. The total potential energy of the system can ~. 
be expressed as 

U(q) = L U(qi' qk). 
lSi#kSn 

We should note that there is an assumption here. We are assuming that! 
total potential energy can be obtained by simply summing over pairwise\' 
teractions of the particles. This requires thal the disturbance of the men" 
between particles i and j due to other particles is negligible. This assump' 
mayor may not be valid in a given system, yet it is a common simpli 
assumption and serves to make the model tractable. 

The kinetic energy is more easily obtained. The kinetic energy of a si:. 
~~ . 

m('2 ·2 20'2)K i = 2 Xi + Yi + d i 

and hence the total kinetic energy is given by 

n 

K= LKi. 
i=l 

Here, m is the mass of a waterbug and dots denote differentiation with res_: 

~ti~. I 
Now, in the absence of friction, the equations of motion are obtained." 

defining the Lagrangian as £ = K - U and applying the appropriate E 
Lagrange equation. To include friction, the Lagrangian can be equated to' 
sum of the frictional forces and again the appropriate Euler-Lagrange equa' 
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FIGURE 9.8: An example of a defective waterbug assembly. 

applied. Here, this yields 

2 

8mXi + L O~ U(qi' qk) = -4kf Xi (9.41) 
k=l,k#i t 

2 

8mih + L ~U(qi' qk) = -4kf Yi (9.42) 
k=l,k#i OYi 
2 

2" " a 2.8md 0 + 6 00. U(qi' qk) = -4kfd Xi· (9.43) 
k=l,k#i t 

Analytically this model is intractable. To study the behavior, Klavins 
turned towards numerical simulation. But, one additional modelling assump­
tion was necessary. As formulated, the model does not prevent or account for 
the contact of feet. In order to simulate this model numerically, Klavins as­
SUmed that when two feet made contact, they became the same foot. That is, 
they overlapped. Further, the singularity in the potential energy that occurs 
When feet made contact was smoothed for numerical purposes. We note that 
numerical simulations of this system are not trivial. Computations involving 
Only 40 particles took several hours. Nevertheless, in numerical simulations, 
the waterbug model did appear to capture the appropriate self-assembly dy­
namics. ---­

klavins was able to analytically investigate the stability of assemblies of 
~aterbugs that formed during his simulations. In particular, he was able to 

Ow that the assembly of two tiles in Figure 9.7 (a) was stable, while the 
assembly in Figure 9.7 (b) was not. Similar results could be obtained for 

.......__._...
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systems of more than two tiles. But, the original intent of the model wag' 
simply to investigate how waterbug tiles self-assembled, but to investi 
how dynamic control over the wettability of the waterbug feet could tra 
into control over the self-assembling system. To study this, Klavins PO 
two problems. The first problem was to use the control over wettabilit·" 
eliminate defects in a given self-assembled structure. An example of su 
defect is shown in Figure 9.8. The second problem was to use the c 
over wettability to build finite structures. This is reminiscent of the pro 
posed by Hosokawa et al. who wanted to build stable structures consisti 
only four particles. Klavins showed that standard ideas from control th' 
could be applied to this problem. In particular, he exhibited an open-Io 
controller that specified the wettability of individual feet as time evolved. 
could be used to eliminate a certain class of defects, Similarly, he exhibit" 
control scheme that allowed the construction of certain finite structures. ; 

The Klavins wat~rbug model illustrates how a theoretical framework 
help aid in the development of future self-assembling systems. In develo 
a relatively flexible model, Klavins was able to provide experimentalistsl 

a platform to test and develop control schemes before costly experi 
were conducted. It also illustrates some of the difficulties with theore. 
approaches to self-assembly. In particular, even relatively simple models'"1 
quickly become analytically intractable and computationally challenging:~,.; 

9.3 Abstract Models 

In this section, we present three models that are abstracted from the 
eral behavior of self-assembling systems. These models are represent 
examples of this approach. We refer the reader to [2, 3, 102, 123, 132J 
information on similar abstract approaches to modelling self-assembly. 

9.3.1 Conformational Switching 

In Chapter 3, we learned that proteins can assume different conformati , 
For example, in examining the tobacco mosaic virus, we saw how interac 
with RNA could induce washer shaped protein subunits to switch to a 1(' 

washer conformation. In this new conformation, lock washers could b;. 
together and ultimately form the complete viral unit. This is a typical exaIIl' 
of a conformational switch in self-assembly; in one conformation a partid 
unable to bind, but once it switches to a new state, binding becomes possi 

The first abstract model we'l! consider is a model developed by Kazub 
Saitou and Mark J. Jakiela [112, 113, 114J that attempts to clarify the encod/ 

power' of conformational switches. In particular, Saitou and Jakiela addressed 
the yield problem in self-assembly. They realized that a self-assembly process 
could be viewed as a sequence of small steps. This sequence, their subassembly 
sequence, dictated the final structures that were formed. Saitou and Jakiela 
wanted to know if particles capable of switching between different conforma­
tions could be used to encode for a particular subassembly sequence. In turn, 
if the subassembly sequence could be specified and unproductive sequences 
ruled out, they speculated that perhaps this would increase the yield of the 
final product. 

First, to understand how a conformational switch might encode a subassem­
bly sequence, let's consider a highly simplified situation. Imagine we have a 
system consisting of a mixture of three particle types. We'll label these A, B, 
and C. Let's picture our particles as squares and imagine that each particle 
has certain bond sites on its surface. We'll take our first set of particles to 
be as shown in Figure 9.9. Here, we'll use the same notation for bond sites 

8GB
 
FIGURE 9.9: Particles and bonds for our first look at conformation switch­
ing. 

that we did in discussing the DNA tiles of Chapter 8. In this system, that 
means that A can bond to B on the left and that C can bond to B on the 
right. Note that B cannot bond to itself, it can only bond to a matching site 
on a complementary particle. The same is true for A and C. Now, imagine 
that we have a large bag containing an equal mixture of these three tile types. 
At each time step, we'll reach into the bag, randomly grab two particles or 
clusters, pull them out, and if they can be bound, we'll bind them. We then 
return either the particles or the bound cluster to the bag and repeat the pro­
Cess. With the three particle types of Figure 9.9, it is clear that if we repeat 
this process long enough, we'll be left with a bag of ABC clusters. But, in 
constructing these clusters, there are two possible subassembly sequences. We 
can envision these as reactions. In particular, 

A + B ---> AB (9.44) 

B + C ---> BC 

AB + C ---> ABC 

A + BC ---> ABC. 
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This means that we can get to the ABC clusters by either first forming a 

by B'. 

This 

Ill
g 

~ 

' 

C' 

and then adding an A, or by first forming an AB and then adding a C. Th, 
is no preferred subassembly route. 

To conveniently represent subassembly sequences, Saitou and Jakiela 
troduced the following notation. We write a complete subassembly sequ' 
using parenthesis, at each step in the process placing a set of parent 
around a completed subassembly. So, the subassembly sequences above 
be denoted (A(BC)) and ((AB)C). Working our way inwards from the ou, 
most pair of parenthesis, we recover the subassembly sequence in reverse. ':' 
(A(BC)) denotes the sequence where BC formed first and an A was ad 
while ((AB)C) denotes the sequence where AB formed first and a 
added. A second way of viewing possible assembly sequences of a com 
collection of particles was also introduced. In this notation, we form a 
as shown in Figure 9.10. Here, we begin in the top bin with a set of 

ABC 

I (AB) C I I A (BC) I 

~ ~ 
I «AB)C) I I (A(BC» I 

FIGURE 9.10: Tree notation for representing assembly sequences. 

three particles, A, B, and C. We then follow the arrows downwards thr 
each possible assembly sequence. In either case we arrive at the end prodq 
~C. 

Whatever our notation, it is clear that in the particle system of Figure. 
all subassembly sequences are equally likely. We can create a preferred r -,.,. 
or preferred assembly sequence by introducing a conformational switch;:l 
particular, we introduce a switch in the B particles. The type of switch 
use was called a minus device by Saitou and Jakiela. A mechanical ver: 
of the switch is pictured in Figure 9.11. The binding sites on the nevi' 
particle are as before, but jutting out from the sides of the particle are P 
rods that can act to restrict binding. If a C particle attempts to bind wit 
the push rod will prevent this binding. On the other hand, if an A parti~ 
attempts to bind with B on the left, it will be able to push the push 
inwards and complete the bond. When this happens, the interior block sH 
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Push rod 

Push rod 

FIGURE 9.11: A mechanical conformational switch. The push rod on the 
left moves when an A particle attempts to bind. This pushes the center block 
downwards, freeing the right side for binding with a C particle. 

downward, this frees the right hand push rod and makes the right hand bond 
site accessible. When an A binds with B and frees the right hand bond site, we 
say that B has switched its conformation. We denote this new conformation 

In our new system, the set of possible reactions is restricted. In 
particular, we have 

A+B-tAB' (9.45) 
AB' + C -t AB'C. 

means that only one subassembly sequence is possible, the sequence 
denoted by ((AB)C). The introduction of a conformational switch has allowed 
us to encode for a particular subassembly sequence. 

But, how does this affect the yield of the process? In our ABC examples 
it is not easy to see this effect. In fact, there are two different ways that 
the presence of a conformational switch can effect the yield of a particular 
self-assembly process. To understand the first way, consider the two systems 
Shown in Figure 9.12. In either case, imagine that our goal is to assemble an 
ABC complex. In this case, that would result in a complete square. In Figure 
9.12 (a), the bond sites for both the Band C particles are exposed. Hence, 
the following reactions can occur 

A +B -tAB (9.46) 
AB + C -t ABC 

A + C -t AC. 

Note that here, once an AC complex has formed, there is no pathway lead­
to the desired end product. That is, there are two assembly sequences, 

((A.B)C) and (AC). The first leads to the desired product, the second does 
llot. In Figure 9.12, we have the same system, but the A particle now has a 
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L5 W W 
(a) 

~ W W 
(b) 

FIGURE 9.12: An example illustrating the effect of conformational 
ing on yield. In (a), the C particle can bind first, blocking the B particleiJ: 

•i'
.:;

., 
~ 

',' 

(b), the bond site for C is unavailable until the AB bond has been mad,

conformational switch. The bond site for C particles is not exposed unle 
B particle binds first. The possible reactions for this system are 

A + B -- A'B 

A'B + C -- A'BC 

and the only assembly sequence is ((A' B)C). The presence of the confc 
tional switch prevents particles from getting trapped in the AC configur 
and thereby increases the yield. 

Saitou and Jakiela actually focused on the second way a conformat 
switch can effect they yield of an assembly process. To understand this 
imagine we have a simple two particle system consisting of particle ty~ 

and B. This time, we imagine that A's can bond to B's from the leR;, 
hence the only reaction in the system is 

A+B --AB. 

We'll also imagine that our target complex is the AB complex. But, in , 
process, imagine that we have a large concentration of A's and a small con 
tration of B's. This implies that the number of favorable reactions occ 
in the system will be very small. If we again imagine our particles b 
drawn from a large bag a pair at a time, most of the time we'll draw a 
of A's and return them to the bag with no bond being formed. This ro, 
that when stopped at some finite time, the yield of our process will be 
low. Now, imagine we introduce a conformational switch. We'll let the 
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bond with one another pairwise in the reaction 

A+A -- AA' . (9.49) 

'The right hand A particle has switched to the conformation A'. This new 
conformation allows the A'to detach from the A when a bond with a B 
particle is formed. That is, the information about the bonding of B is prop­
agated through the A' particle and delivered to the A particle. Saitou and 
Jakiela called this type of conformational switch a plus device. Here, this is 
represented by the reaction 

AA' +B -- A+AB. (9.50) 

We also imagine that once an AB is formed no further bonding is possible. 
Now, if we start with a high concentration of A's and a small concentration of 
B's, the concentration of A's will be rapidly reduced as AA' complexes form. 
This has the effect of increasing the frequency of reactions involving Band 
hence increasing the yield of the process. 

Having seen the power of the conformational switch, let's consider a four 
particle system. We'll label our particles A, B, C, and D and allow the 
following reactions to occur 

A+B--AB (9.51) 

B+C--BC 

C+D--CD 

AB + C -- ABC 

ABC + D -- ABCD 

B+CD--BCD 

A+BCD------->ABCD 

AB + CD -- ABCD. 

Our target structure will be ABCD; there are five possible assembly se­
quences. They are: (((AB)C)D), ((AB)(CD)), (A((BC)D)), (A(B(CD))), 
and ((A(BC))D). In the first system we considered, the ABC system, we 
Could use the minus device to encode for any assembly sequence. However, in 
this four particle system, Saitou and Jakiela realized that the minus device 
\Vas not powerful enough to encode for all of the different assembly sequences. 
In particular, they realized that ((A(BC))D) and (A((BC)D)) were unencod­
able, no matter how many conformational switches of the minus device type 
\Vere used. Further, by simulating the set of reactions above numerically they 
observed that these unencodable sequences were among the highest yielding 
Sequences in the system. In order to be able to encode these sequences using 
Conformational switches, Saitou and Jakiela had to use both plus and mi­
nus devices. With this combination, any of the assembly sequences could be 
encoded. 

-~~_._ ..... _._._­
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But, now the general question remains. Suppose we have n labelled 

"

,

' 
~tj 

r 

'

_, 

pi 
cles and we let them interact pairwise following the trend above. This qui 
leads to enormous reaction sets and numerous assembly sequences. In ex 
ining the cases n = 3 and n = 4, Saitou and Jakiela had showed that tl> 
two conformational switch types were sufficient to encode for any asse 
sequence. But what about the general case? Saitou and Jakiela focuse; 
two major questions: 

1.	 If we're given an assembly sequence can we tell whether or not it~ 

be encoded using only minus devices? Or, some combination of 
and plus devices? 

2.	 If a sequence can be encoded, how many conformations are necessa 
encode the given assembly sequence? 

Note that this second question was motivated by the four particle sy 
In order to encode the sequences ((A(BC))D) and (A((BC)D)) they hai 
use two types of switches. In addition, they had to use particles that c' 
both plus and minus device switches. These particles had more than.: 
different conformations. Hence, if a combination of plus and minus de 
was to be used, they had to allow for the possibility of particles with 
conformations. 

To answer these questions, Saitou and Jakiela defined a one-dimensL. 
self-assembling automaton (SA). That is, they set up a formal structure, 
cal of those used in theoretical computer science, such that within the cOlt 
of this structure they could answer the questions posed above. In their ill 
an (SA) was defined to be a pair M = (~, R), where ~ was a finite set of 
ponents and R was a finite set of assembly rules. The assembly rules 
of two forms. The first, was an attaching rule that abstracted the noti 
minus devices. In particular, attaching rules were rules of the form 

Qa	 + bf3 ----; aibli . 

Here, the a and b are particle labels, and the exponents track the conformat 
of the given particle. The second rule was a propagation rule abstracted fr! 
the notion of plus devices. These rules were of the form 

Qa bf3 ----; aibli . 

Once this structure was in place, Saitou and Jakiela were able to classify S
 
based on the presence of different rule types. They were able to prove th
 
both rule types were allowed any assembly sequence could be encoded u:
 
only three conformations per particle. The reader is referred to [112, 113, 1
 
for details of the proofs of these results.
 

The work of Saitou and Jakiela nicely illustrates the role of the abstr~ 
model in self-assembly. Their model was not based on any particular physi' 
system, but rather on the basic notion of conformational switching seen' 

. 0_._.__----- ­
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any self-assembling systems. With this type of model Saitou and Jakiela 
Jllere able to ask and answer "What is possible?" type questions. Note that 
:ithout this formal structure, little progress can be made with these questions. 
It is hard to imagine how within the context of one specific experimental 
System, questions such as these could be addressed. On the other hand, 
Jllodels such as this are always open to the criticism that they abstract too 
Jlluch . That too much of the real world is left out for the model to be able to 
be useful in designing any real world self-assembling system. The challenge 
is to bridge that gap, using the power of the abstract approach, but adding 
enough of the complexity of the real world to make such an approach useful 
in system design. 

9.3.2 Graph Grammars 

In Chapter 7, we discussed the dynamic self-assembling robotic tiles built 
by the Klavins' group. We noted that the tiles relied upon a graph grammar in 
order to make binding decisions. In this section, we'll examine this basic graph 
grammar approach as developed by Klavins and his collaborators [72, 73]. 

While the graph grammar approach incorporates the idea of conforma­
tional switching, it is aimed at different questions than the model of Saitou 
and Jakiela. To understand the questions addressed by the graph grammar 
approach, let's re-consider the simple self-assembling system we began with 
above. In particular, we'll again assume we have an equal mixture of three 
particle types, A, B, and C, and that they bind according to the reactions 
given in Equations (9.45). Now, above we assumed the complex ABC was 
our target structure. But, this time, let's imagine that we have two target 
structures, AB and CC. The first of these, AB, does occur during the as­
sembly process. 0 If we stopped the process at some finite time, we can expect 
to find some percentage of our particles in the AB state. But, the longer the 
process continues, the less of these particles we will find. Eventually, given 
enough time, all AB particles will bind with C's and form ABC complexes. 
Klavins et al. called structures like these unstable. This reflects the fact that 
these structures do not persist for all time. In contrast, structures like ABC 
are called stable. Once they form, no further change is possible. Our second 
target structure, CC, is an example of what Klavins et al. called unreachable. 
Given the particles and the binding interactions, there is no assembly process 
that will lead to the CC structure. Structures such as ABC, AB, or BC, are 
reachable structures within this system. 

The graph grammar model is focused on these stable and reachable struc­
tures. Notice that the notion of a reachable structure is equivalent to the 
forward problem in self-assembly. The forward problem asks: Given a set of 
Particles and a set of binding rules, what structures can form? In the lan­
~uag.e of the graph grammar model: Given a set of particles and a set of 
lndmg rules, what structures are reachable? A characterization of the set 

of reachable structures is one aspect of the graph grammar model. Klavins 
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et al. also focused on the backward problem in self-assembly. In the langu 

.

' 

ove~ 

of the graph grammar model they asked: How can a set of binding rules. 
constructed to ensure that a desired target is reachable? To this they ad . 
the notion of stable structures. This is an aspect of the yield problem in 
assembly. By focusing on stable structures, Klavins et al. not only want 
ensure that a target was reachable, but that target structures would ap 
once the assembly process was complete. In combining the questions a' 
reachable and stable structures, Klavins et al. actually asked the very sp 
question: Is it possible to design a set of binding rules such that a de 
target structure is the only stable element in the reachable set for the systE 

To address this question, Klavins et al. worked within the context of·; 
mathematical structure known as a graph grammar. A graph is simp 
collection of vertices and edges. We encountered graphs in Chapter 6 W 

we studied the folding system of Griffith. If each vertex is given a name; 
have a labelled graph. Formally, we say that a labelled graph, G, 
alphabet L:, is a triple, G = (V, E, I), where V is a set of vertices, E is al 

of edges, and I is a labelling function. This function maps the vertices i 
to the alphabet, L:. That is, the labelling function gives each vertex an' 
Throughout the remainder of this section, when we use the term graph, 
mean a labelled graph. 

Now, to build a graph grammar, we need to attach a rule set to our gr 
G. The rule set simply describes what we usually think of as binding rules". 
conformational changes for a self-assembling system. As an easy example" 
develop a graph representation and a rule set for a simple system of parti, 
We imagine that we have one type of particle that can be in anyone of t 
conformations. This means we need three letters in our alphabet, we'll. 
a, b, and c. To be concrete, let's assume that we start with eight part.,. 
all in conformation a. Each individual particle is identified by a vertex 
labelled by a letter from our alphabet. Our initial setup is pictured in Fi. 
9.13. Note that initially our graph has no edges, only labelled vertices. ~ 

rule set captures how this graph evolves during an assembly process. 
example, consider the rule set, denoted <1'>, defined by 

a a---+b-b 

a b---+b-c 

b b ---+ c - c. 

The first rule says that a pair of vertices, each with label a, may be repl 
by a pair of vertices, each with label b, and connected by an edge. The secil 
and third rules are similar. These are examples of constructive rulesJ 
the context of self-assembly, we are taking a pair of particles, creating a 
between them, and in the case of the rules above, changing their conforma" 
The action of this rule set on our initial graph is shown in Figure 9.13. 

Notice that unlike the model of Saitou and Jakiela, here rules need' 
be applied one at a time. Rather, an assembly sequence is valid if 

Models of Self-Assembly 239 

a 

a 

a 

a 

a 

a 

a 

a 

Go 

b-b 

b-b 

b-b 

a 

G1 

a 

b-c-c-b 
b-c-b 

c-c 
I I 
c-c 

b b 
I I 
c-c 

a 

G3 G2 

FIGURE 9.13: An example of an assembly sequence in the graph grammar 
model. Arrows indicate the direction of time. 

application of the rule set to the graph at step i, G i , produces the graph at 
step i +1, G i +!. In Figure 9.13, we also see elements of the reachable set. Any 
structure that appears as we follow the arrows in the figure is, by definition, 
reachable. However, not all of these reachable structures are stable. We see 
that single particle pairings or chains of such particles are unstable. Only the 
closed loop of four c type particles is a stable structure. If you examine this 
structure and the rule set <1'>, you'll see that no c's appear on the left hand 
side of any rules. Hence, no changes to this structure are possible and it must 
be stable. 

Now, rules need not be constructive and they need not be limited to acting 
on only two vertices. We can have destructive rules, for example 

b-b---+a a (9.55) 

Or relabelling rules such as 

b - b ---+ a-c. (9.56) 

We can also have rules such as 

c - c - c ---+ c - a - c (9.57) 

that act on larger components of our graph. Putting the rules and graphs 
together, Klavins et al. defined their graph assembly system as the pair (Go, <P) 
COnsisting of an initial graph, Go, and a rule set <P. 
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Drawing on classical topological techniques, Klavins et al. were able to c 

, 

' 

~ 

acterize the set of reachable structures and stable structures for their graf 
assembly system. More importantly, they were able to exhibit an algorit 
that allowed them to construct a rule set <f> such that a given graph G co 
tuted the entire reachable set for their graph assembly system. This argum 
also allowed them to find an algorithm that allowed them to construct a ri 
set <f> such that a given graph G constituted the entire stable set for t 
graph assembly system. Note that these algorithms are constructive. 
their input they take a graph G and as their output they return a rule 
and a labelling function, l. The reader is referred to [72] for proofs of t 

results. 
In some ways, the graph grammar approach of Klavins et al. is simpl:' 

generalization of the model of Saitou and Jakiela. However, it is an im~ 
tant generalization as it captures features of self-assembly not captured' 
the Saitou and Jakiela model. Additionally, it provides a constructive -~. 

tion to an instance of the backward problem of self-assembly. Further, 
graph grammar model has been implemented in the Klavins self-assemb 
robotic system. It serves as a language that allows the robotic particl_, 
make decisions about binding and unbinding. Unfortunately, the model'\ 
its limitations. In particular, it does not account for geometry. Particles'\ 
treated abstractly as vertices with labels and there is no way to capture I 
geometric configuration of a given set of particles. Also, the algorithms del',' 
oped by Klavins et al. can lead to rule sets that are not physically realiza! 
There is no way to prevent this within the context of the model. As witl:\~ 
such abstract models, the next step is to bring the model closer to phy~ 
reality. 

9.3.3 The Tile Assembly Model 

The Tile Assembly Model was introduced by Erik Winfree and develope 
Winfree and his collaborators in [140, 141, 142, 107]. This important ml
 
links computation and self-assembly. As we saw in Chapter 8, by exploi ,j 

this link Winfree et al. were able to self-assemble a Sierpinski Gasket 
DNA tiles. This link is the most promising route to programmed self-asse 
available today.
 

To understand this connection between computation and self-assembly.
 
need to introduce two concepts, the Turing Machine and Wang Tiles.
 
notion of a Turing Machine allows us to think about computation abstrac:
 
i. e., divorced from any particular computer architecture or platform.
 
notion of Wang Tiles connects computation to arrays of tiles. The Tile'
 
sembly Model marries the notion of Wang Tiles to the notion of self-assem,
 
thereby completing the connection to computation.
 

The Turing Machine was introduced by the mathematician Alan Tu.."
 
in 1936 as a way of defining computation and as a tool for exploring
 
computability of objects. With this definition Turing formalized the quest
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ra.ised by David Hilbert in 1900, that is, whether it was possible or not to 
decide whether a given mathematical statement could be proved. In answer­
ing Hilbert's question, Turing also launched the field of theoretical computer 
science and provided its most powerful model. 

A Turing Machine can be visualized as follows. Imagine we have an infinitely 
long tape that is subdivided into equal size squares. Each square can either 
be left blank, or can contain a zero or a one. Hovering over one square of 
the tape is a read-write head. This read-write head can erase a symbol, write 
a. symbol, and advance the tape one square in either direction. The read­
write head makes decisions about whether to read, write, or erase based on 
its internal state. The head has a finite number of states and a look-up table 
that dictates how it should behave once it reads the tape. That is, the head 
reads the value from the square below, checks its state, decides what its new 
state should be, what should be written in the square below, and how the tape 
should be advanced. The machine then executes this instruction and repeats. 
Usually we specify a special halting state where the Turing Machine stops all 
operation. 

This definition of a Turing Machine can be made precise. It is typical to 
define a Turing Machine as a quintiple (8, AT, N, so, F), where 8 is the finite 
set of available states, AT is the tape alphabet, N is a transition function that 
tells the machine how to respond to a given input, So is the initial state, and 
F is the set of halting states. 

Whether we proceed formally or not, the important fact to remember about 
Turing Machines is that they provide a model of computation. Furthermore, 
this model is universal. Turing was able to show that there existed a Universal 
TUring Machine that could simulate any other Turing machine. This implies 
that any computing process that can be simulated by a Turing Machine can in 
fact be simulated by one machine, the Universal Turing Machine. One caveat 
- there are other possible models of computation. The famous Church- Turing 
Thesis lets us sidestep this complication. This thesis states that all sufficiently 
complex models of computation are equivalent. Hence, to study computation 
we need only study Turing Machines, and to study Turing Machines we need 
only study the Universal Turing Machine. 

Now, suppose we have a model that we think is capable of simulating com­
Putation. In order to prove this, we simply need to prove that it is equivalent 
to a Universal Turing Machine, or more simply, we need to show that our 
rnodel is Turing Universal. One such model was proposed by Hao Wang in 

/1961	 [136]. In [136], he introduced what have become known as Wang Tiles. 
Wang tiles can be visualized as a set of square tiles colored or shaded as in 
Figure 9.14. For a given set of tiles, Wang imagined that infinitely many 
Copies of each were available. Using these tiles, he then asked if they could 
be made to tile the plane. But, in placing each tile, one had to observe the 
r~le that colonid sides of adjacent tiles had to match. For example, the first 
tIle in the figure could be placed below a copy of the second tile, but nowhere 
else. Tiles were not allowed to be rotated. 
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Profile - Erik Winfree 

Erik Winfree is the architect of the Tile Assembly Model. With 
traduction of this model in 1998, Winfree showed that not only W8l{ 

assembly equivalent to computation, but that implementing computatj' 
self-assembly was practical. His method for constructing computing" 
assembling tiles opened the door to the world of programmable self­
This promises to usher in a new era of self-assembled, atomically p . 
highly structured nanomaterials. 

Fully embracing the interdisciplinary nature of self-assembly, Winfr 
not only made seminal contributions to theoretical self-assembly, but to' 
imental self-assembly as well. In conjunction with Nadrian C. Seeman,i 
free demonstrated that DNA tiles could self-assemble into ordered pe'-" 
structures. A few years later, this time working with Paul W.K. Rothe 

l 

Winfree fabricated a Sierpinski Gasket from DNA tiles, thereby demo 
ing that the full promise of the Tile Assembly Model could be realized' 
imentally. For this work, Rothemund and Winfree shared the 2006 Fori 
Institute's Feynman Prize for Nanotechnology - capturing the prize in~.~ 

the experimental and theoretical categories. " 

In a recent conversation, Winfree shared his thoughts on the blind 
facing researchers in self-assembly today. He writes: 

~' ...; 
This is one blind spot: many researchers look at information and f 
algoTithms and can only see data processing programs running onr 
conventional electronic computers - they don't see that information l 
and algorithms are intrinsic to the behavioT of molecular systems·~ 

and that under'standing this aspect of molecular behavior is key to~' 

fully exploiting what molecules can be designed to do. Or they do, . 
see that, but they don't yet see that it is no longer just the r'ealm 1. 
of science fiction. 

I 
Winfree was trained as a mathematician and a computer scientist., 

received an undergraduate degree in mathematics from the Univers( 
Chicago and a Ph.D. in Computation and Neural Systems from the Cali, 
Institute of Technology. He is the recipient of numerous prizes and a~. 
including a MacArthur Fellowship and a PECASE award from the Nat, 
Science Foundation. In 1999, MIT's Technology Review named Winfr'-' 
of their "Top 100 Young Innovators." 

Presently, Winfree is an associate professor of computer science at the 
ifornia Institute of Technology. He currently leads several research efIo 
the areas of DNA self-assembly, DNA computing, the study of gene regula: 
networks, and DNA and RNA folding. 

In his original paper, Wang conjectured that any set of tiles that could 
be placed so that they tiled the plane, did so periodically. In 1966, Robert 
Berger constructed a set of Wang tiles that tiled the plane, but aperiodically. 
At this time, it had already been shown that any Turing machine could be 
represented in terms of Wang tiles. By providing an example of an aperiodic 
Wang tiling, Berger showed that the tiling question of Wang was the same 
as the halting question in the theory of Turing Machines. This crucial result 
established that Wang tiles were in fact Turing Universal. 

FIGURE 9.14: A set of four Wang tiles. Tiles must remain oriented as 
shown and can only be placed next to tiles if the edge colors match. 

The crucial insight of Winfree was to realize that the colors on Wang tiles 
could be replaced by specific binding rules. But, binding rules meant self­
assembly and that meant that tile based self-assembly could compute. In 
the other direction, this meant that tiles could be designed to produce pro­
grammed structures. Fully programmable self-assembly was possible. 

Winfree did more than simply establish this result theoretically. With his 
/' Tile Assembly Model, Winfree showed how to construct tiles capable of com­

Putation via self-assembly that were physically realizable. The DNA tile sys­
tems of Chapter 8 are the most prominent examples of this construction. To 
Specify the Tile Assembly Model, Winfree first. needed to adapt Wang's no­
tion of a tile. This was straightforward; a tile in the Tile Assembly Model 
28 a Wang tile, but one described in the language of self-assembly. Instead 

------_..._--_... __..._......_._­
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of thinking of a tile as having colors, Winfree thought of his tiles in terIIlB 
binding domains. A tile in the Tile Assembly Model is a unit square with 
belled edges and just like Wang tiles, these tiles cannot be rotated. The ed 
of these tiles possess bond sites on their four sides, and it is by matching b 
sites that tiles can assemble. 

o
 

n 1 n
 

1 

nOn c R 
o1 

o1 

c 0 c
 

o
 
n 1 c 

1 

s 

o 

L 

FIGURE 9.15: Tiles in the Tile Assembly Model. Small characters deo<,
 
binding sites, large characters specify tile type, and edge thickness indic
 
bond strength.
 

A simple set of seven tiles is shown in Figure 9.15. Note that each t"
 
labelled in three ways, a large character in the center, small characters aro
 
the edges, and by edge colors. The small characters represent the diffE!
 
types of binding sites. In this set, c's can bind to c's, l's can bind to l's an<
 
forth. The edge colors indicate the strength of these possible bonds. The,
 
edges denote binding sites that have zero strength. The single lined
 
denote binding sites that have strength one. The double lines indicate
 
with strength two. The large characters in the center of each tile are U8- '.
 

denote tile type. The tiles with the L, R, and S are called nucleating t~,
 

' 
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These tiles provide a nucleating center around which other tiles can grow and 
compute. The tiles with the 1 and the 0 are called rule tiles. These are the 
tiles that actually perform computation in the Tile Assembly Model. 

Now, notice that in the Tile Assembly Model, tiles don't simply bond, they 
do so with a particular strength. By introducing this notion of bond strength, 
Winfree was also able to introduce the notion of temperature into the Tile 
Assembly Model. Suppose we denote the temperature of the system by T. 

We can now restrict possible binding interactions by only allowing a tile to 
bind to the assembly if the sum of the bond strengths it makes with that 
assembly exceeds or equals the temperature, T. For example, suppose we set 
T = 1 and we start with an L tile. Then, any tile that can match bond sites 
with the L tile can join the assembly. However, if we take T = 2, the growth 
is more restrictive. Initially the only tile that can join the L tile is an Stile; 
it's the only one capable of making a strength two bond. But, as the assembly 
grows we begin to encounter sites were a tile labelled 1 or 0 can make two 
bonds in joining the assembly. Since the sum of the bond strengths made by 
such tiles is now greater than or equal to the temperature, they are allowed 
to join. This type of bonding is called cooperative bonding. An example of 
a growing structure with temperature T = 2 is shown in Figure 9.16. This 

GG
GGG

GGGGG 
E]E]E]E]E] 

FIGURE 9.16: A sample configuration of tiles in the Tile Assembly Model. 
lIere, the temperature, T = 2. 

structure began with a single L tile, added an S tile to the right, added an R 
tile above the S, and then finally, a 1 could bind in the corner. 

To relate this growing structure to computation, we interpret the rows in 
~he structure, read from the bottom up, as output bit strings. Computation 
IS performed on these bit strings by the tiles labelled 1 and 0 in the same way 

___._~ --l 
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as computation was performed by the Rothemund system of Chapter 6. 
lower and right edges of the 1 and 0 tiles serve as inputs. In matching 
sites on the growing structure, these edges are taking two tiles as input i 
a computation. The upper and left edges of the 1 and 0 tiles serve as ," 
output. These output surfaces are exposed and available to serve as input'i 
the next step of the computation. ' 

Now, as with previous systems we've encountered, the Tile Assembly M 
can be formally defined. In particular, a tile system, T, may be define<t 
a quadruple, (T, S, g, r), where T is the set of tiles, S is a set of r-st ' 
seed assemblies, g is the strength function, and r is the temperatur~. H! 
the strength function, g, simply makes precise the notion of summing 
strengths, and the definition of r-stable makes precise the notion of assem 
forming constrained by the temperature of the system. Within this m 
self-assembly is a means of going from one configuration of a tile syste 
another configurat~on. A tile may be added to a configuration if the res 
still r-stable; that is, tiles must satisfy the temperature rules outlined ab 

Within the context of the Tile Assembly Model, Winfree and his collab ' 
tors have been able to answer a wide range of questions. Here, we'll des 
just one of these results. The reader is referred to [107, 140, 141, 142];' 
other related results. ' 

In [107] Rothemund and Winfree sought to study the complexity of 
assembly. Recall that in Chapter 5, we introduced the notion of Kolmogq 
complexity. We defined this measure of complexity for bit strings and 10 
said that the complexity of a bit string was the length of the shortest comp, 
program needed to produce that string. As an example, we considered stri 
of magnetic cubes created by self-assembly. If we started with cubes of ,I 

colors, one containing two north faces, the other two south faces, and labe, 
these by 1 and 0 respectively, we produced strings that looked like 010101! 
That is, we produced an alternating colored string of cubes. If we started 
eight cubes, four of each type, we would produce this result exactly. Since 
assemblies were not oriented we treated this string and the string 10101. 
as identical. In terms of the Kolmogorov program length definition, we cd 
compute the complexity of this string. But, we can also relate this not: 
of complexity to our self-assembling system. The method of Winfree et 
simply to count the number of distinct particle types needed to uniquely , 
assemble a target object. That is, the complexity of a self-assembled objec 
the number of distinct particle types needed to guarantee that this objec-. 
the unique result of the self-assembly process. In this example, the compIe 
would be 2. We are able to assemble a string of alternating colored cubes us" 
only two distinct particle types. ' 

A less trivial question asks: What is the complexity of a self-assembled 
N square?6 The step from one dimension to two dimensions is large. Not, 
that for our alternating colored cube example, the complexity of assembly~. 
2, independent of the length of the target object. It takes two particle types~ 

assemble an alternating colored chain of length 8 or of length 800. This 
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8Ssembling system is not very complex. But, to guarantee that we assemble 
EI square and nothing else requires a more complex system. If you think back 
to the many tile assembly systems of Chapter 6, you'll realize that none of 
them are capable of this task. Winfree et al. proved that the complexity of 
Eln N x N square was N 2 for systems with temperature r = 1. From the 
discussion of temperature above, we see that in the r = 1 case, bonding is 
not cooperative. A tile either bonds using one edge, or it cannot bond at all. 
When r = 2, Winfree et al. proved that the complexity dramatically decreased 
to O(log(N)).7 In this case, the bonding is cooperative. Tiles can bond either 
by activating a bond site of strength two, or by activating two bonds sites of 
strength one. That is, two particles already in the assembly could cooperate 
to add this new particle. 

The Tile Assembly Model is an important abstract model of self-assembly. 
While it is abstracted from a wide range of self-assembling systems and while 
there are nonphysical aspects to the model, it does closely capture the be­
havior of self-assembling tile systems. In particular, it captures the behavior 
of DNA tiles; in fact, the design of DNA tiles was at least partially inspired 
by the Tile Assembly Model. Even an abstract model can be closely cou­
pled to experiment. Further, the model allows us to address the question 
of the complexity of a self-assembling system. In addressing this question, 
the Tile Assembly Model provides useful answers to "What is possible?" type 
questions. Finally, it is the model that makes the important link between 
computation and self-assembly; this is likely the route that future progress 
will follow to achieve programmed self-assembly. 

9.4 Chapter Highlights 

•	 Theoretical approaches to self-assembly are widely varied. They are 
best defined by the questions they seek to answer. 

•	 Physical models attempt to capture the behavior of one specific exper­
imental system or some small set of closely related systems. They are 
useflfl for clarifying complicated parameter spaces and guiding experi­
mental efforts. 

/ 

•	 Abstract models attempt to answer "What is possible?" type questions. 
They are usually abstracted from a wide class of experimental systems. 
They are useful for clarifying minimal conditions under which a partic­
ular behavior of self-assembling systems can be achieved. 

•	 The model of field driven mean curvature surfaces, the model of entropy 
driven helix formation, the chemical kinetics based model, and the wa­
terbug model, are all examples of physical models. They all operate at 

_... ._. --- ..- - - ----'-----_.._.._-	 - ---_.- -_ ....._~ 



248 Self Assembly 

different levels of abstraction, but are motivated by a small set of close 

' 
t:

" 

~ 

,. 

related experimental systems. 

•	 The conformational switch model, the graph grammar model, and 
Tile Assembly Model, are all examples of abstract models. They 
motivated by a broad class of experimental systems or the general pr 
erties of self-assembly. 

9.5 Exercises
 

Section 9.2
 

1.	 The parameter A in Equations (9.15) and (9.16) contains the square~ 

the applied voltage. Why? What does this imply for the possible sha 
that can be obtained by applying an electric field? 

2.	 Show that Equations (9.15) and (9.16) reduce to the catenoid probi!q 
of Chapter 6 when the applied voltage is removed. 

3.	 Show that Equations (9.15) and (9.16) admit the special solution u '?' 

Find the value of the parameters in the problem for which this solutl' 
exists. 

4.	 Consider a hard sphere and rod model where two identical rods are 
solution with a concentration of hard spheres. Suppose that the entro; 
and excluded volume ideas of this section hold, but that the rods 
perfectly rigid and cannot bend. Instead, imagine that the rods ~' 
repulsive and that the energy needed to bring them together incre 
with the inverse of the square of the distance between their cente~ 
Formulate a free energy and analyze this model. You may assume tq: 
the rods remain parallel and that their tops and bottoms are aligned;;, 

5.	 The helix formation model of this section strongly resembles the ma, 
netic system of Chapter 5 where an external field was applied. Disc 
this relationship. 

6.	 Return to the first two parts of this text and identify systems where 
energy minimization principle came into play. Discuss how the mo. 
elling techniques of this section could be applied to construct models ..' 
those systems. 

7.	 For the lattice model of this section, compute the possible configuratio~ 
and energies for N = 2. Sketch a phase diagram for this system. 

..... .. . 
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8.	 For the lattice model of this section, find two different rods, of the 
same length, that have the same total energy. Your rods should be 
truly different. That is, they should not be equivalent under rotation or 
reflection. Can you choose a and {3 such that your rods are the minimal 
energy configuration for your system? 

9.	 The Hosokawa model is easily implemented on a computer. Construct 
a simulation using the parameter values Pfl = 0.438, Pf2 = 0.375, 
P~2 = 0.25, P~3 = 0, Pf3 = 0.188, and Pg3 = O. (Assume Pf2 = P~l 
etc.) Plot Xl versus X2 for different instants in time. Do the same for 
X3 versus X4. Now, change Pf3 to zero and repeat. How do your results 
change? 

10.	 The waterbug model is difficult to simulate numerically. However, based 
on the material of Chapter 5 and the ideas of this section, you should 
be able to build a similar, more tractable model. In particular, consider 
two interacting spherical particles on the surface of a fluid. In Chapter 
5, we studied the attractive force between these particles. Use this force 
and the ideas of this section to build a dynamical model governing the 
attraction between two spherical particles. See [133] for one such model. 

Section 9.3 

11.	 Return to the self-assembling systems of the first two parts of this text 
and uncover all possible types of conformational switching that you can 
find. Compare and contrast these different types of switches. Which 
ones fit into the framework of the models of this section? 

12.	 Numerically simulate the ABC model with and without a conforma­
tional switch. Keep track of the assembly sequences followed by the 
system. Compare the behavior of the two. 

13.	 Again return to the first two parts of this book and find examples of 
self-assembling systems that can be described by the conformational 
switching model and examples of systems that cannot be described by 
this model. For one of those that can, formulate the model. For those 
that cinnot, clearly explain what features of the system the model can­
not (}~pture. 

/
14.	 Return to the first two parts of this book yet again and find examples of 

self-assembling systems that can and cannot be described by the graph 
grammar model. For one that can, formulate the initial graph and rule 
set. For one that cannot explain what features of the system the model 
cannot capture. 

15.	 The Tile Assembly Model is closely related to DNA tiling as discussed in 
Chapter 8. Return to Chapter 8 and compare DNA tiling with the Tile 

1
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Assembly Model. What features of the physical system a captured ~ What features are left out? 

16.	 The set of tiles presented here for the Tile Assembly Model are design 
to count in binary. Extend the structure of Figure 9.16 and show h 
this binary counting takes place. 

17.	 As noted in Chapter 5 and again here, the complexity of one-dimensio 
self-assembling systems are generally low. Devise a system that asse 
bles a chain of length 3N such that the chain consists of repeati 
subunits that alternate colors, say, red, white, and blue. What is t 
complexity of your system? 

18.	 Throughout this section, we avoided discussing defects in self-assembl:' 
Each of the abstract models discussed incorporates or considers the p 
sibility of defective bonding. How might the introduction of defects ill' 
these models affect the answers to the questions each model sets out 
address? ( 

9.6 Related Reading 

The book by Lin and Segel is a great introduction to both mathemati 
modelling and continuum mechanics. 

C.C. Lin and L.A. Segel, Mathematics Applied to Deterministic P 
lems in the Natural Sciences, SIAM, 1988. 

If you wish to learn more about electromagnetism, Jackson and Stratt, 
are the place to start. 

J.D. Jackson, Classical Electrodynamics, Second Edition, Wiley, 1975,1 

J .A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941. 

An introduction to mathematical modelling in the context of micro­
nanosystems may be found in: 

J.A. Pelesko and D.H. Bernstein, Modeling MEMS and NEMS, ChI;': 
man and Hall/CRC, 2002. 

A good place to learn more about Lagrangian dynamics is in the bo 
by Weinstock. 

R. Weinstock, Calculus of Variations, Dover, 1974. 
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Abstract models of self-assembly often use the language and tools of 
computer science. You can learn more about these tool in the book by 
Sipser. 

M. Sipser, Introduction to the Theory of Computation, PWS Publishing, 
1997. 

A gentler introduction to the ideas of theoretical computer science can 
be found in the books of Dewdney. 

A.K. Dewdney, The Tinkertoy Computer, W.H. Freeman and Company, 
1993. 

A.K. Dewdney, The New Turing Omnibus, W.H. Freeman and Company, 
1993. 

9.7 Notes 

1. The one exception to this is the first two abstract models, which are 
closely related and share notation. 

2. If you've forgotten, the divergence theorem relates volume integrals to 
surface integrals. In this model, the integrals taken over the gap between the 
soap film and the electrode can be replaced by integrals over the soap film 
and electrode surfaces. 

3. Note that this reference is to a Ph.D. thesis that was not yet complete 
when this book was written. I expect that it will be available by the time 
this book appears. If not, Derek Moulton will be happy to provide you with 
details of this work. He may be reached at moulton@math.udel.edu. 

4. It is not yet clear whether or not this parameter regime is experimentally 
aCcessible at all. 

5. In Chapter 5, p was q. Here q is used to denote the state of the system. 

6. This problem was actually posed by Len Adleman. See profile in Chapter
2. 

7. The "big 0" notation is used in asymptotic analysis. The statement 
O(log(N)) roughly means that as N tends to infinity the complexity grows 
like a constant times log(N). 


